Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 821
Filtrar
1.
J Transl Med ; 22(1): 337, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589873

RESUMO

BACKGROUND: The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS: We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS: In silico analyses combined with cell-based assays identified the Wnt-ß-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, ß-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS: An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Camundongos , Animais , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , beta Catenina/metabolismo , Glucocorticoides , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Fenótipo , Prognóstico , Via de Sinalização Wnt , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
2.
Biochim Biophys Acta Mol Basis Dis ; : 167187, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653354

RESUMO

Clinical relevance of miRNAs as biomarkers is growing due to their stability and detection in biofluids. In this, diagnosis at asymptomatic stages of Alzheimer's disease (AD) remains a challenge since it can only be made at autopsy according to Braak NFT staging. Achieving the objective of detecting AD at early stages would allow possible therapies to be addressed before the onset of cognitive impairment. Many studies have determined that the expression pattern of some miRNAs is dysregulated in AD patients, but to date, none has been correlated with downregulated expression of cellular prion protein (PrPC) during disease progression. That is why, by means of cross studies of miRNAs up-regulated in AD with in silico identification of potential miRNAs-binding to 3'UTR of human PRNP gene, we selected miR-519a-3p for our study. Then, in vitro experiments were carried out in two ways. First, we validated miR-519a-3p target on 3'UTR-PRNP, and second, we analyzed the levels of PrPC expression after using of mimic technology on cell culture. In addition, RT-qPCR was performed to analyzed miR-519a-3p expression in human cerebral samples of AD at different stages of disease evolution. Additionally, samples of other neurodegenerative diseases such as other non-AD tauopathies and several synucleinopathies were included in the study. Our results showed that miR-519a-3p overlaps with PRNP 3'UTR in vitro and promotes downregulation of PrPC. Moreover, miR-519a-3p was found to be up-regulated exclusively in AD samples from stage I to VI, suggesting its potential use as a novel label of preclinical stages of the disease.

3.
Prion ; 18(1): 40-53, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38627365

RESUMO

Prion disease is an infectious and fatal neurodegenerative disease. Western blotting (WB)-based identification of proteinase K (PK)-resistant prion protein (PrPres) is considered a definitive diagnosis of prion diseases. In this study, we aimed to detect PrPres using formalin-fixed paraffin-embedded (FFPE) specimens from cases of sporadic Creutzfeldt-Jakob disease (sCJD), Gerstmann-Sträussler-Scheinker disease (GSS), glycosylphosphatidylinositol-anchorless prion disease (GPIALP), and V180I CJD. FFPE samples were prepared after formic acid treatment to inactivate infectivity. After deparaffinization, PK digestion was performed, and the protein was extracted. In sCJD, a pronounced PrPres signal was observed, with antibodies specific for type 1 and type 2 PrPres exhibited a strong or weak signals depending on the case. Histological examination of serial sections revealed that the histological changes were compatible with the biochemical characteristics. In GSS and GPIALP, prion protein core-specific antibodies presented as PrPres bands at 8-9 kDa and smear bands, respectively. However, an antibody specific for the C-terminus presented as smears in GSS, with no PrPres detected in GPIALP. It was difficult to detect PrPres in V180I CJD. Collectively, our findings demonstrate the possibility of detecting PrPres in FFPE and classifying the prion disease types. This approach facilitates histopathological and biochemical evaluation in the same sample and is safe owing to the inactivation of infectivity. Therefore, it may be valuable for the diagnosis and research of prion diseases.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doença de Gerstmann-Straussler-Scheinker , Doenças Neurodegenerativas , Doenças Priônicas , Príons , Humanos , Proteínas Priônicas , Proteínas PrPSc/metabolismo , Inclusão em Parafina , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Príons/metabolismo , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Endopeptidase K , Anticorpos , Formaldeído
4.
World J Gastrointest Oncol ; 16(4): 1564-1577, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660648

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer and a significant cause of cancer-related mortality globally. Resistance to chemotherapy, especially during CRC treatment, leads to reduced effectiveness of drugs and poor patient outcomes. Long noncoding RNAs (lncRNAs) have been implicated in various pathophysiological processes of tumor cells, including chemotherapy resistance, yet the roles of many lncRNAs in CRC remain unclear. AIM: To identify and analyze the lncRNAs involved in oxaliplatin resistance in CRC and to understand the underlying molecular mechanisms influencing this resistance. METHODS: Gene Expression Omnibus datasets GSE42387 and GSE30011 were reanalyzed to identify lncRNAs and mRNAs associated with oxaliplatin resistance. Various bioinformatics tools were employed to elucidate molecular mechanisms. The expression levels of lncRNAs and mRNAs were assessed via quantitative reverse transcription-polymerase chain reaction. Functional assays, including MTT, wound healing, and Transwell, were conducted to investigate the functional implications of lncRNA alterations. Interactions between lncRNAs and transcription factors were examined using RIP and luciferase reporter assays, while Western blotting was used to confirm downstream pathways. Additionally, a xenograft mouse model was utilized to study the in vivo effects of lncRNAs on chemotherapy resistance. RESULTS: LncRNA prion protein testis specific (PRNT) was found to be upregulated in oxaliplatin-resistant CRC cell lines and negatively correlated with homeodomain interacting protein kinase 2 (HIPK2) expression. PRNT was demonstrated to sponge transcription factor zinc finger protein 184 (ZNF184), which in turn could regulate HIPK2 expression. Altered expression of PRNT influenced CRC cell sensitivity to oxaliplatin, with overexpression leading to decreased sensitivity and decreased expression reducing resistance. Both RIP and luciferase reporter assays indicated that ZNF184 and HIPK2 are targets of PRNT. The PRNT/ZNF184/HIPK2 axis was implicated in promoting CRC progression and oxaliplatin resistance both in vitro and in vivo. CONCLUSION: The study concludes that PRNT is upregulated in oxaliplatin-resistant CRC cells and modulates the expression of HIPK2 by sponging ZNF184. This regulatory mechanism enhances CRC progression and resistance to oxaliplatin, positioning PRNT as a promising therapeutic target for CRC patients undergoing oxaliplatin-based chemotherapy.

5.
Biomolecules ; 14(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540703

RESUMO

Glycosylation, a prevalent post-translational modification, plays a pivotal role in regulating intricate cellular processes by covalently attaching glycans to macromolecules. Dysregulated glycosylation is linked to a spectrum of diseases, encompassing cancer, neurodegenerative disorders, congenital disorders, infections, and inflammation. This review delves into the intricate interplay between glycosylation and protein conformation, with a specific focus on the profound impact of N-glycans on the selection of distinct protein conformations characterized by distinct interactomes-namely, protein assemblies-under normal and pathological conditions across various diseases. We begin by examining the spike protein of the SARS virus, illustrating how N-glycans regulate the infectivity of pathogenic agents. Subsequently, we utilize the prion protein and the chaperone glucose-regulated protein 94 as examples, exploring instances where N-glycosylation transforms physiological protein structures into disease-associated forms. Unraveling these connections provides valuable insights into potential therapeutic avenues and a deeper comprehension of the molecular intricacies that underlie disease conditions. This exploration of glycosylation's influence on protein conformation effectively bridges the gap between the glycome and disease, offering a comprehensive perspective on the therapeutic implications of targeting conformational mutants and their pathologic assemblies in various diseases. The goal is to unravel the nuances of these post-translational modifications, shedding light on how they contribute to the intricate interplay between protein conformation, assembly, and disease.


Assuntos
Príons , Processamento de Proteína Pós-Traducional , Glicosilação , Polissacarídeos/química , Conformação Proteica , Príons/metabolismo
6.
Front Cell Infect Microbiol ; 14: 1348279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435303

RESUMO

Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Príons , Humanos , alfa-Sinucleína , Disbiose , Doenças Neuroinflamatórias , Proteínas Priônicas
7.
BMC Neurol ; 24(1): 92, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468258

RESUMO

BACKGROUND: Human prion diseases (HPDs) are fatal neurodegenerative disorders characterized by abnormal prion proteins (PrPSc). However, the detection of prion seeding activity in patients with high sensitivity remains challenging. Even though real-time quaking-induced conversion (RT-QuIC) assay is suitable for detecting prion seeding activity in a variety of specimens, it shows lower accuracy when whole blood, blood plasma, and blood-contaminated tissue samples are used. In this study, we developed a novel technology for the in vitro amplification of abnormal prion proteins in HPD to the end of enabling their detection with high sensitivity known as the enhanced quaking-induced conversion (eQuIC) assay. METHODS: Three antibodies were used to develop the novel eQUIC method. Thereafter, SD50 seed activity was analyzed using brain tissue samples from patients with prion disease using the conventional RT-QUIC assay and the novel eQUIC assay. In addition, blood samples from six patients with solitary prion disease were analyzed using the novel eQuIC assay. RESULTS: The eQuIC assay, involving the use of three types of human monoclonal antibodies, showed approximately 1000-fold higher sensitivity than the original RT-QuIC assay. However, when this assay was used to analyze blood samples from six patients with sporadic human prion disease, no prion activity was detected. CONCLUSION: The detection of prion seeding activity in blood samples from patients with sporadic prion disease remains challenging. Thus, the development of alternative methods other than RT-QuIC and eQuIC will be necessary for future research.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/metabolismo , Proteínas Priônicas , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Encéfalo/metabolismo , Plasma/metabolismo , Síndrome de Creutzfeldt-Jakob/diagnóstico
8.
Acta Neuropathol ; 147(1): 32, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319380

RESUMO

Synapse loss correlates with cognitive decline in Alzheimer's disease, and soluble oligomeric amyloid beta (Aß) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aß leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aß and mediates toxicity. While many candidates have been observed in model systems, their relevance to human AD brain remains unknown. This is in part due to methodological limitations preventing visualization of Aß binding at individual synapses. To overcome this limitation, we combined two high resolution microscopy techniques: array tomography and Förster resonance energy transfer (FRET) to image over 1 million individual synaptic terminals in temporal cortex from AD (n = 11) and control cases (n = 9). Within presynapses and post-synaptic densities, oligomeric Aß generates a FRET signal with transmembrane protein 97. Further, Aß generates a FRET signal with cellular prion protein, and post-synaptic density 95 within post synapses. Transmembrane protein 97 is also present in a higher proportion of post synapses in Alzheimer's brain compared to controls. We inhibited Aß/transmembrane protein 97 interaction in a mouse model of amyloidopathy by treating with the allosteric modulator CT1812. CT1812 drug concentration correlated negatively with synaptic FRET signal between transmembrane protein 97 and Aß. In human-induced pluripotent stem cell derived neurons, transmembrane protein 97 is present in synapses and colocalizes with Aß when neurons are challenged with human Alzheimer's brain homogenate. Transcriptional changes are induced by Aß including changes in genes involved in neurodegeneration and neuroinflammation. CT1812 treatment of these neurons caused changes in gene sets involved in synaptic function. These data support a role for transmembrane protein 97 in the synaptic binding of Aß in human Alzheimer's disease brain where it may mediate synaptotoxicity.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Proteínas de Membrana , Animais , Humanos , Camundongos , Peptídeos beta-Amiloides , Encéfalo , Sinapses , Proteínas de Membrana/metabolismo
9.
BMC Cancer ; 24(1): 199, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347462

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive. METHODS: To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings. RESULTS: Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells. CONCLUSIONS: Together, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.


Assuntos
Glioblastoma , Príons , Humanos , Expressão Gênica , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Proteínas rab de Ligação ao GTP/genética , Sinaptofisina/metabolismo
10.
BMC Genomics ; 25(1): 177, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355406

RESUMO

BACKGROUND: Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) remain one of the deleterious disorders, which have affected several animal species. Polymorphism of the prion protein (PRNP) gene majorly determines the susceptibility of animals to TSEs. However, only limited studies have examined the variation in PRNP gene in different Nigerian livestock species. Thus, this study aimed to identify the polymorphism of PRNP gene in Nigerian livestock species (including camel, dog, horse, goat, and sheep). We sequenced the open reading frame (ORF) of 65 camels, 31 village dogs and 12 horses from Nigeria and compared with PRNP sequences of 886 individuals retrieved from public databases. RESULTS: All the 994 individuals were assigned into 162 haplotypes. The sheep had the highest number of haplotypes (n = 54), and the camel had the lowest (n = 7). Phylogenetic tree further confirmed clustering of Nigerian individuals into their various species. We detected five non-synonymous SNPs of PRNP comprising of G9A, G10A, C11G, G12C, and T669C shared by all Nigerian livestock species and were in Hardy-Weinberg Equilibrium (HWE). The amino acid changes in these five non-synonymous SNP were all "benign" via Polyphen-2 program. Three SNPs G34C, T699C, and C738G occurred only in Nigerian dogs while C16G, G502A, G503A, and C681A in Nigerian horse. In addition, C50T was detected only in goats and sheep. CONCLUSION: Our study serves as the first to simultaneously investigate the polymorphism of PRNP gene in Nigerian livestock species and provides relevant information that could be adopted in programs targeted at breeding for prion diseases resistance.


Assuntos
Doenças Priônicas , Príons , Scrapie , Animais , Cavalos/genética , Ovinos/genética , Cães , Príons/genética , Príons/metabolismo , Proteínas Priônicas/genética , Polimorfismo de Nucleotídeo Único , Gado/genética , Fases de Leitura Aberta , Filogenia , Camelus/genética , Doenças Priônicas/genética , Doenças Priônicas/veterinária , Cabras/genética , Cabras/metabolismo , Scrapie/genética
11.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140965, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739110

RESUMO

The pathogenesis of the various prion diseases is based on the conformational conversion of the prion protein from its physiological cellular form to the insoluble scrapie isoform. Several chaperones, including the Hsp60 family of group I chaperonins, are known to contribute to this transformation, but data on their effects are scarce and conflicting. In this work, two GroEL-like phage chaperonins, the single-ring OBP and the double-ring EL, were found to stimulate monomeric prion protein fibrillation in an ATP-dependent manner. The resulting fibrils were characterised by thioflavin T fluorescence, electron microscopy, proteinase K digestion assay and other methods. In the presence of ATP, chaperonins were found to promote the conversion of prion protein monomers into short amyloid fibrils with their further aggregation into less toxic large clusters. Fibrils generated with the assistance of phage chaperonins differ in morphology and properties from those formed spontaneously from monomeric prion in the presence of denaturants at acidic pH.


Assuntos
Bacteriófagos , Príons , Animais , Proteínas Priônicas/química , Bacteriófagos/metabolismo , Príons/química , Chaperonina 60/química , Trifosfato de Adenosina
12.
Alzheimers Res Ther ; 15(1): 201, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968719

RESUMO

BACKGROUND: Progression of Alzheimer's disease leads to synapse loss, neural network dysfunction and cognitive failure. Accumulation of protein aggregates and brain immune activation have triggering roles in synaptic failure but the neuronal mechanisms underlying synapse loss are unclear. On the neuronal surface, cellular prion protein (PrPC) is known to be a high-affinity binding site for Amyloid-ß oligomers (Aßo). However, PrPC's dependence in knock-in AD models for tau accumulation, transcriptomic alterations and imaging biomarkers is unknown. METHODS: The necessity of PrPC was examined as a function of age in homozygous AppNL-G-F/hMapt double knock-in mice (DKI). Phenotypes of AppNL-G-F/hMapt mice with a deletion of Prnp expression (DKI; Prnp-/-) were compared with DKI mice with intact Prnp, mice with a targeted deletion of Prnp (Prnp-/-), and mice with intact Prnp (WT). Phenotypes examined included behavioral deficits, synapse loss by PET imaging, synapse loss by immunohistology, tau pathology, gliosis, inflammatory markers, and snRNA-seq transcriptomic profiling. RESULTS: By 9 months age, DKI mice showed learning and memory impairment, but DKI; Prnp-/- and Prnp-/- groups were indistinguishable from WT. Synapse loss in DKI brain, measured by [18F]SynVesT-1 SV2A PET or anti-SV2A immunohistology, was prevented by Prnp deletion. Accumulation of Tau phosphorylated at aa 217 and 202/205, C1q tagging of synapses, and dystrophic neurites were all increased in DKI mice but each decreased to WT levels with Prnp deletion. In contrast, astrogliosis, microgliosis and Aß levels were unchanged between DKI and DKI; Prnp-/- groups. Single-nuclei transcriptomics revealed differential expression in neurons and glia of DKI mice relative to WT. For DKI; Prnp-/- mice, the majority of neuronal genes differentially expressed in DKI mice were no longer significantly altered relative to WT, but most glial DKI-dependent gene expression changes persisted. The DKI-dependent neuronal genes corrected by Prnp deletion associated bioinformatically with synaptic function. Additional genes were uniquely altered only in the Prnp-/- or the DKI; Prnp-/- groups. CONCLUSIONS: Thus, PrPC-dependent synapse loss, phospho-tau accumulation and neuronal gene expression in AD mice can be reversed without clearing Aß plaque or preventing gliotic reaction. This supports targeting the Aßo-PrPC interaction to prevent Aßo-neurotoxicity and pathologic tau accumulation in AD.


Assuntos
Doença de Alzheimer , Príons , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas Priônicas/genética , Transcriptoma , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Príons/metabolismo , Sinapses/patologia , Neurônios/metabolismo , Modelos Animais de Doenças , Proteínas tau/genética , Proteínas tau/metabolismo
13.
J Neurochem ; 167(5): 696-710, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37941487

RESUMO

The misfolding of the mammalian prion protein from its α-helix rich cellular isoform to its ß-sheet rich infectious isoform is associated with several neurodegenerative diseases. The determination of the structural mechanism by which misfolding commences, still remains an unsolved problem. In the current study, native-state hydrogen exchange coupled with mass spectrometry has revealed that the N state of the mouse prion protein (moPrP) at pH 4 is in dynamic equilibrium with multiple partially unfolded forms (PUFs) capable of initiating misfolding. Mutation of three evolutionarily conserved aromatic residues, Tyr168, Phe174, and Tyr217 present at the interface of the ß2-α2 loop and the C-terminal end of α3 in the structured C-terminal domain of moPrP significantly destabilize the native state (N) of the protein. They also reduce the free energy differences between the N state and two PUFs identified as PUF1 and PUF2**. It is shown that PUF2** in which the ß2-α2 loop and the C-terminal end of α3 are disordered, has the same stability as the previously identified PUF2*, but to have a very different structure. Misfolding can commence from both PUF1 and PUF2**, as it can from PUF2*. Hence, misfolding can commence and proceed in multiple ways from structurally distinct precursor conformations. The increased extents to which PUF1 and PUF2** are populated at equilibrium in the case of the mutant variants, greatly accelerate their misfolding. The results suggest that the three aromatic residues may have been evolutionarily selected to impede the misfolding of moPrP.


Assuntos
Proteínas Priônicas , Príons , Animais , Camundongos , Mamíferos/metabolismo , Mutação/genética , Proteínas Priônicas/metabolismo , Dobramento de Proteína , Isoformas de Proteínas/metabolismo
14.
Biomedicines ; 11(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38001943

RESUMO

Cofilactin rod pathology, which can initiate synapse loss, has been extensively studied in rodent neurons, hippocampal slices, and in vivo mouse models of human neurodegenerative diseases such as Alzheimer's disease (AD). In these systems, rod formation induced by disease-associated factors, such as soluble oligomers of Amyloid-ß (Aß) in AD, utilizes a pathway requiring cellular prion protein (PrPC), NADPH oxidase (NOX), and cytokine/chemokine receptors (CCR5 and/or CXCR4). However, rod pathways have not been systematically assessed in a human neuronal model. Here, we characterize glutamatergic neurons differentiated from human-induced pluripotent stem cells (iPSCs) for the formation of rods in response to activators of the PrPC-dependent pathway. Optimization of substratum, cell density, and use of glial-conditioned medium yielded a robust system for studying the development of Aß-induced rods in the absence of glia, suggesting a cell-autonomous pathway. Rod induction in younger neurons requires ectopic expression of PrPC, but this dependency disappears by Day 55. The quantification of proteins within the rod-inducing pathway suggests that increased PrPC and CXCR4 expression may be factors in the doubling of the rod response to Aß between Days 35 and 55. FDA-approved antagonists to CXCR4 and CCR5 inhibit the rod response. Rods were predominantly observed in dendrites, although severe cytoskeletal disruptions prevented the assignment of over 40% of the rods to either an axon or dendrite. In the absence of glia, a condition in which rods are more readily observed, neurons mature and fire action potentials but do not form functional synapses. However, PSD95-containing dendritic spines associate with axonal regions of pre-synaptic vesicles containing the glutamate transporter, VGLUT1. Thus, our results identified stem cell-derived neurons as a robust model for studying cofilactin rod formation in a human cellular environment and for developing effective therapeutic strategies for the treatment of dementias arising from multiple proteinopathies with different rod initiators.

15.
Front Vet Sci ; 10: 1301998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026617

RESUMO

In 2006, a case of atypical H-type BSE (H-BSE) was found to be associated with a germline mutation in the PRNP gene that resulted in a lysine substitution for glutamic acid at codon 211 (E211K). The E211K amino acid substitution in cattle is analogous to E200K in humans, which is associated with the development of genetic Creutzfeldt-Jakob disease (CJD). In the present study, we aimed to determine the effect of the EK211 prion protein genotype on incubation time in cattle inoculated with the agent of H-BSE; to characterize the molecular profile of H-BSE in KK211 and EK211 genotype cattle; and to assess the influence of serial passage on BSE strain. Eight cattle, representing three PRNP genotype groups (EE211, EK211, and KK211), were intracranially inoculated with the agent of H-BSE originating from either a case in a cow with the EE211 prion protein genotype or a case in a cow with E211K amino acid substitution. All inoculated animals developed clinical disease; post-mortem samples were collected, and prion disease was confirmed through enzyme immunoassay, anti-PrPSc immunohistochemistry, and western blot. Western blot molecular analysis revealed distinct patterns in a steer with KK211 H-BSE compared to EK211 and EE211 cattle. Incubation periods were significantly shorter in cattle with the EK211 and KK211 genotypes compared to the EE211 genotype. Inoculum type did not significantly influence the incubation period. This study demonstrates a shorter incubation period for H-BSE in cattle with the K211 genotype in both the homozygous and heterozygous forms.

16.
Front Vet Sci ; 10: 1273050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026621

RESUMO

Background: Prion diseases have been extensively reported in various mammalian species and are caused by a pathogenic prion protein (PrPSc), which is a misfolded version of cellular prion protein (PrPC). Notably, no cases of prion disease have been reported in birds. Single nucleotide polymorphisms (SNPs) of the prion protein gene (PRNP) that encodes PrP have been associated with susceptibility to prion diseases in several species. However, no studies on PRNP polymorphisms in domestic ducks have been reported thus far. Method: To investigate PRNP polymorphisms in domestic ducks, we isolated genomic DNA from 214 Pekin duck samples and sequenced the coding region of the Pekin duck PRNP gene. We analyzed genotype, allele, and haplotype distributions and linkage disequilibrium (LD) among the SNPs of the Pekin duck PRNP gene. In addition, we evaluated the effects of the one non-synonymous SNP on the function and structure of PrP using the PROVEAN, PANTHER, SNPs & GO, SODA, and AMYCO in silico prediction programs. Results: We found five novel SNPs, c.441 T > C, c.495 T > C, c.582A > G, c.710C > T(P237L), and c.729C > T, in the ORF region of the PRNP gene in 214 Pekin duck samples. We observed strong LD between c.441 T > C and c.582A > G (0.479), and interestingly, the link between c.495 T > C and c.729C > T was in perfect LD, with an r2 value of 1.0. In addition, we identified the five major haplotype frequencies: TTACC, CTGCC, CTACC, CCGCT, and CTATC. Furthermore, we found that the non-synonymous SNP, c.710C > T (P237L), had no detrimental effects on the function or structure of Pekin duck PrP. However, the non-synonymous SNP had deleterious effects on the aggregation propensity and solubility of Pekin duck PrP compared with wildtype Pekin duck PrP. Conclusion: To the best of our knowledge, this study is the first report on the genetic characteristics of PRNP SNPs in Pekin ducks.

17.
J Biol Chem ; 299(11): 105329, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37805139

RESUMO

Prion diseases are a group of transmissible neurodegenerative diseases primarily caused by the conformational conversion of prion protein (PrP) from α-helix-dominant cellular prion protein (PrPC) to ß-sheet-rich pathological aggregated form of PrPSc in many mammalian species. Dogs exhibit resistance to prion diseases, but the mechanism behind the phenomenon remains poorly understood. Compared with human PrP and mouse PrP, dog PrP has two unique amino acid residues, Arg177 and Asp159. Because PrPC contains a low-complexity and intrinsically disordered region in its N-terminal domain, it undergoes liquid-liquid phase separation (LLPS) in vitro and forms protein condensates. However, little is known about whether these two unique residues modulate the formation of PrPC condensates. Here, using confocal microscopy, fluorescence recovery after photobleaching assays, thioflavin T binding assays, and transmission electron microscopy, we report that Arg177 and Asp159 from the dog PrP slow the LLPS of full-length human PrPC, shifting the equilibrium phase boundary to higher protein concentrations and inhibit amyloid formation of the human protein. In sharp contrast, His177 and Asn159 from the human PrP enhance the LLPS of full-length dog PrPC, shifting the equilibrium phase boundary to lower protein concentrations, and promote fibril formation of the canid protein. Collectively, these results demonstrate how LLPS and amyloid formation of PrP are inhibited by a single residue Arg177 or Asp159 associated with prion disease resistance, and how LLPS and fibril formation of PrP are promoted by a single residue His177 or Asn159. Therefore, Arg177/His177 and Asp159/Asn159 are key residues in modulating PrPC liquid-phase condensation.


Assuntos
Doenças Priônicas , Príons , Camundongos , Cães , Humanos , Animais , Proteínas Priônicas/metabolismo , Príons/metabolismo , Amiloide/química , Proteínas Amiloidogênicas , Mamíferos/metabolismo
18.
Cancers (Basel) ; 15(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894349

RESUMO

The cellular prion protein (PrPC) is a glycoprotein anchored to the cell surface by glycosylphosphatidylinositol (GPI). PrPC is expressed both in the brain and in peripheral tissues. Investigations on PrPC's functions revealed its direct involvement in neurodegenerative and prion diseases, as well as in various physiological processes such as anti-oxidative functions, copper homeostasis, trans-membrane signaling, and cell adhesion. Recent findings have revealed the ectopic expression of PrPC in various cancers including gastric, melanoma, breast, colorectal, pancreatic, as well as rare cancers, where PrPC promotes cellular migration and invasion, tumor growth, and metastasis. Through its downstream signaling, PrPC has also been reported to be involved in resistance to chemotherapy and tumor cell apoptosis. This review summarizes the variance of expression of PrPC in different types of cancers and discusses its roles in their development and progression, as well as its use as a potential target to treat such cancers.

19.
Virus Res ; 338: 199249, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858731

RESUMO

Flaviviruses are a major cause of viral diseases worldwide, for which effective treatments have yet to be discovered. The prion protein (PrPc) is abundantly expressed in brain cells and has been shown to play a variety of roles, including neuroprotection, cell homeostasis, and regulation of cellular signaling. However, it is still unclear whether PrPc can protect against flaviviruses. In this study, we investigated the role of PrPc in regulating autophagy flux and its potential antiviral activity during Japanese encephalitis virus (JEV) infection. Our in vivo experiment showed that JEV was more lethal to the PrPc knocked out mice which was further supported by histological analysis, western blot and rtPCR results from infected mice brain samples. Role of PrPc against viral propagation in vitro was verified through cell survival study, protein expression and RNA replication analysis, and adenoviral vector assay by overexpressing PrPc. Further analysis indicated that after virus entry, PrPc inhibited autophagic flux that prevented JEV replication inside the host cell. Our results from in vivo and in vitro investigations demonstrate that prion protein effectively inhibited JEV propagation by regulating autophagy flux which is used by JEV to release its genetic material and replication after entering the host cell, suggesting that prion protein may be a promising therapeutic target for flavivirus infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Camundongos , Proteínas Priônicas/genética , Proteínas Priônicas/farmacologia , Linhagem Celular , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
20.
Biomolecules ; 13(9)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37759770

RESUMO

The Sup35 prion protein of budding yeast has been reported to undergo phase separation to form liquid droplets both at low pH in vitro and when energy depletion decreases the intracellular pH in vivo. It also has been shown using purified proteins that this phase separation is driven by the prion domain of Sup35 and does not re-quire its C-terminal domain. In contrast, we now find that a Sup35 fragment consisting of only the N-terminal prion domain and the M-domain does not phase separate in vivo; this phase separation of Sup35 requires the C-terminal domain, which binds Sup45 to form the translation termination complex. The phase-separated Sup35 not only colocalizes with Sup45 but also with Pub1, a stress granule marker protein. In addition, like stress granules, phase separation of Sup35 appears to require mRNA since cycloheximide treatment, which inhibits mRNA release from ribosomes, prevents phase separation of Sup35. Finally, unlike Sup35 in vitro, Sup35 condensates do not disassemble in vivo when the intracellular pH is increased. These results suggest that, in energy-depleted cells, Sup35 forms supramolecular assemblies that differ from the Sup35 liquid droplets that form in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...